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In view of the known analogy [1] between the equations of stationary
creep and the equations of the theory of elastic-plastic deformations
(or nonlinear elasticity), the expressions for the forces and moments

in terms of the deformations of the middle surface - derived for an
elastic-plastic shell on the basis of Kirchhoff’s hypothesis [2] ~ are
applicable for the analysis of creep in shells. In the solution of
specific problems, certain simplifications are introduced [3,4] by
various arguments, sometimes not gquite consistently [5]. The theorem of
nesting surfaces of constant rate of energy dissipation, established
recently by Drucker and Calladine [6,7]. facilitates an approach to this
problem from a more general point of view., As a result, it is shown that
it is possible to derive simplified relations between the forces and
moments and the deformations, whose form allows for an effective utili-
zation of the variational methods, in particular, the method given by
Kachanov {8].

1. We shall assume the power law of creep, which results in the equa-
tions of stationary creep in the form [1]

&, = Byis,™ (uniaxial tension) 1.1
. A
& =55; {general case) (1.2
where
m-41
A={TE%TWM’ T:?%VEEFQ@, c;%%@m

The rate of dissipation of energy per unit volume, D, is given by
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the expression

. dA
Dzsijﬁijjdijé}—i::(m+1)A (1.3)

Let the deforming body be subjected to the loading by concentrated
forces or moments ¢, acting at certain points.

We introduce, instead of Bl, two new constants Oy and éN connected by
the relation

ey == Bis ™ (1.4)

and, comparing the average rate of dissipation of energy in the volume
V and the "nominal" rate of dissipation DN = UNéN' we obtain
! CDav =5y 15
v T ONEN {1.5)
The equation (1.5) determines a hypersurface in the rectangular co-
ordinates Oi and Op-

The theorem of Drucker and Calladine states that a surface (1.5) con-
structed for a given value of m is enclosed by another surface corre-
sponding to a smaller value of n.

2. We shall consider first the case of a cylindrical shell with
axially symmetrical loading, which allows for a simple geometrical inter-
pretation. The rates of deformation in the axial and circumferential
directions are given by the known expressions

. . , . o N . = d‘_’w \ .

e, = & - Wiz, €, = 8 (xl == (2.1)
where él and é2 are the rates of extension of the middle surface and il
is the rate of curvature of the generatrix.

Using (2.1), we calculate the rate of dissipation of energy D < D* in
the volume corresponding to the unit area of the middle surface
hi2

Dt == \ (sxéx—$ S,8,)

ds = Ti&y -= Tagpt- M. (2.2)
e
Here, T, and T, are the axial and circumferential forces, M, is the
bending moment. We shall assume that the axial force vanishes, i.e.

T1 = 0, For an elastic material
En? . —_
My == 20wy, Ty = Lhe,
R YT : :

Substituting these relations into (2.2) and assuming v = 1/2,
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E = GN/éN, we obtain the equation of the surface (1.5) for the case

=1
a2 Tg({ my? =1 (2.3)
where
T M ok’
i

In the case m » ®, the surface (1.5) represents the corresponding
yield condition [6]. For a cylindrical shell, with axially symmetrical
loading (for Ty = 0), this condition can be approximately represented
in the form [2}

1 mgd = (2.5)

Figure 1 shows the corresponding curve (continuous line), which only
slightly differs from the exact condition (2] (broken line).
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Fig. 1. Fig. 2.

Figure 2 shows the curves (2.3) and (2.5). According to the theorem
of Drucker and Calladine, similar curves for intermediate values of n
should be contained between these two. The anticipated location of the
intermediate curves can be determined with considerable accuracy be-
cause the distance between the bounding curves is small, and in the
region of largest divergence it is possible to find the points of inter-
section of all the curves with the axis m, using the known exact solu-

tions for pure bending. We shall assume the intermediate curves in the
form

fz =2 -+ amy? = 14 (2-6}

where o is a constant. Applying to the considered shell element the
generalized theorem of Castigliano [1]. we obtain
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. A% . 9A* 1
(A*—— ) @7

=My T 9T, =mye D

The vector with the components k,, €, has the direction normal to the
surface (2.8) at the corresponding point in the plane Ml, 72 and, con-
sequently

s - Of  9f
*le = T, (2.8)

The relations (2.7) and (2.8) are compatible if A*= A*(f) is assumed.

From the comparison, for example, with the case of plane strain it
follows that the function A*(f) should have the form

4
A =g M 2.9)

Substituting the relations (2.7) into (2.2) and taking into account
(2.9), we obtain the equation of the energy-dissipation surfaces in the
form

At — heysy (2.10)

According to Fig. 2, the curves for an arbitrary = should pass
through the point ¢, = 1 for m; = 0. Since f =1 for my =0 and t, =1,
we obtain from (2.10)

A =hoyey 2.11)

In order to determine the constant o we use the exact solution of the
problem of pure bending (with Mé = I/ZKI), which has the form

— 1...__.':‘" pt? oy 1

My=3 &+p)‘u*x ( =7ﬂ

Calculating the corresponding rate of dissipation
M1 €

+w™ En
= M =3 N —atan GNm Myt

and assuming it equal to the constant huNéN, we obtain
1
my = V" —=24p T (2.12)

The curves (2.6) should intersect the axis m, at the points (2.12).
From this condition we find
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3 2
a=1g 2+p T (2.13)

With the above value of o the energy-dissipation curves (2.6) co-
incide, for m = 1 and m -~ ®, with the curves (2.3) and (2.5), respec-
tively. Figure 2 shows also one of the intermediate curves (for m = 3)
constructed according to equation (2.6). In terms of physical variables
in equations (2.7), and taking into account (2.6) and (2.9), we obtain

m—1

. B 162
g = h—": [T,z + 5 Mﬁ] : T,
(2.14)
.  16aB 16a o §
% =}—12’—1[T2’+T Mls] 2 M,

3. The results obtained in the simple problem discussed above are
helpful in the extension of the solution to a general case of a shell,
which can be analyzed in similar manner. Calculating the rate of dis-
sipation D* per unit area of the middle surface with the use of the
usual kinematical hypotheses

En= e -} 2%  en= & + 2%, Y12 = €13 + 2% (3.1)

and neglecting the ratio h/R in comparison to one, we obtain

D* — Tlél —I— Tgéz + Tnéu + Ml;ﬁ + szz + M12;‘12 (32)
where
h/2 hf2 h/2
T1 = S cldz, Tg = 5‘ cs,dz, Tu = j‘ Gudl

—h/2 —hf2 —h/2
(3.3

h/2 h/2 h/2

Ml = “ clzdz, Mg = 5‘ GdeZ, Mu = andz
“h2 “hz ~h/2

The case m = 1 is equivalent to the problem of elasticity (with
v = 1/2). Eliminating from (3.2) the rates of deformation of the middle
surface by means of Love’s relations, substituting the resulting expres-
sion into (1.5), and assuming E = oN/éN, we obtain the equation of the
energy-dissipation surface (for = = 1) in the form

(122 — taty + ta® -+ 3t1a?) + 5 (my® — mymg -+ mg? 4 3mag?) = 1 (3.4)

where the dimensionless forces and moments are defined by the relations
(2.4).

In the case m -~ ® the equation of the energy-dissipation surface
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coincides with the corresponding yield condition. Using an approximate
yield condition [9]

(t12__ [312) + 122 + 3t122) + (”L]_2 -~ MMy + my? + 3m122) =1 (35)
We postulate the form of the intermediate surfaces as

k
= (—tts + o -+ 3tn®) + g (® — mama - mg? - 3myy?) =1 (3.6)

and, accordingly, we assume

. AA* . OA* IA*
1= T, g3 = T, * g12 = 'FT—I:' A o
* o el
. OA* . OA* . aAr (A =mxi " ) (3.7
MEGM, 0 2T oMy M T oMy,

Determining the rate of dissipation D* with the formula (3.2), taking
into account the relations (3.7), we obtain from the condition (1.5) the
equation of the energy-dissipation surfaces

At = heyoy (3.8)

Here, A has obviously the previous meaning, while the constant % is
determined by considering the case of pure bending (or comparing with
the case of a cylindrical shell considered above)

2
k=424 p)1+e 3.9)

Finally, the force-deformation relations (3.7) can be written as

. _ 1 . kB, _ 1
81=h - s 1( ‘E‘Tz), = 7y [y ™ 1<M1_—2TM2>
B 1 kB 1 (3-10)
éz: h L Sm_l (Tz———z_'T]_) » )‘Cz: hm_:2 Sm_l <Mg-—'§‘M1>
. 3B . 3kB
2= " S STTITy, H1g = m+12 S™IM

where

k /s
S = [(Tl2 — T Te 4 To? 4 3T19¥)+ W (M2 — MM, -+ M2+ 3M122)} (3.11)

We also have
B1Sm+1
A* = (_m O (3.12)

Constructing the quadratic form

E:UQ+&§+Q+%@@%-hGq+mm+mﬁ+ mﬁr (3.13)
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with (3.10) we obtain

V3 B s=( 2 )“ LI (3.44)

E =5 — )
2 pm ’ V3/ B¥
¥ith these relations, equations (3.10) can be solved with respect to
the forces and moments and given in the form

ER—1 . O g1, o
To= Sh—po Qautb e, Mi= = ~po (@ + ) R
B o EP1 . (0=2% )
To=0h o= (@ute),  Mi=—p - Gatw
9n E*1 Ll A 34
2= "3 gy My = 7= B .15
1

Introducing the dissipation function

4 , 29h
L' == _‘_l_.._ EP"X] 4"! = 31.6
T "B (3.16)
we can write equations (3.15) also in the following form
T oL* r aL* r aL:
R 2T ey " ey,
g . : . (34D
M oL M 9L Mg = a—L——
I
— T F Having equations (3.7) and (3.17) we de-
! rive, in the usual way, the variational prin-
T ciples
‘ 6{ "j'L dF — Ae) =0
* —_ e} =:
Fig. 3. .S (3.18)

8 {Ae - “ A'dF} -0

where Ae is the power of external (edge and surface) loadings. In the
first of equations (3.18), the variations are meant for kinematically
admissible fields of velocities of the middle surface, while in the
second, for statically admissible fields of forces and moments. Using
Hill's method, it is possible to show that, for the actual state, the
first functional (3.18) has an absolute minimum, and the second func-
tional has an absolute maximum.

4. We shall use the first variational principle (3.18) for the prob-
lem of creep of a cylindrical shell with circumferential line loading
(Fig. 3). Since the axial force is missing, the first of equations
(3.15) gives

26 4 €,=0 %.1)
In a cylindrical shell of radius e, with axially symmetrical loading
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E

y %=0 (4.2)

. w .
82—a' "y = —

|
»

X

where » is the radial velocity of creep. With (4.1) and (4.2), we obtain
from the formula (3.13)

3-’ h'-zxfz
E=‘Zm+ﬂrm] (4.3)
for which
e
. O RBy* . 4 Ry 3
L ::-Tq;i-(ef-+-3;'g‘%ﬁ) (4.4)

We shall assume v in the form of the elastic solution [11]

w = wee ** (cos ax -} sin azx) (4.5)

The first variational principle (3.18) becomes
[e ]
p+1 — w
8 {wrtt [ @1(a)dz— Quo} =0 (@ @=1r(5)) 4.6)
-0

Varying the parameters o and vy, we obtain from (4.6) the two equa-
tions

Q=D@ut, LD@=0 (D(a) =2+ [0 @ dz) %)
@ )

Here, D(a) has the meaning of the "rigidity" of the shell.

Substituting (4.5) into (4.4), and taking into account (4.6) and

(4.7), we obtain the expression (4.8)
hB* T 4 b
= 2B T in ax)2- % (2a%ah)? —sinaz)}| 2 e—Utwax g
D (2) 7% ‘s [(LOS ax 4 sin ax)?- T (2a%ah)? (cos ax — sin ax)] e

This can be represented in the following form

hB* 1 (3k)" a
D= V. ®  (n=g s B=a) (&.9)
% Lhe
V.. 3 2_33_ \ [(d+sinl) =pi( —sint)] 2 exp (:_(12‘_1‘)43.) . (4.10)
1]

The diagram of the function V_(f) can be constructed (for a fixed m)
by evaluating the integral on the right-hand side of (4.10) by numerical
methods. The minimum of this curve corresponds to the root B = [,. The
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values of B found in this way and the corresponding values o, = « [30
are shown in Fig. 4. The same figure contains also the diagram of the
function V,° = V_(P) which determines,

according to (4.9), the sought rigidity

of the shell. e,.aa‘%o
v T .
m
We note that, according to the diagram o, vah //
in Fig. 4, the values of Bo do not differ S0 ///' !
significantly from one; it is exactly N druo
Bo =1 for m = 1. The minimum of the func- v 71
tion V (D) is most important. Assuming ,1// v ,//
p= po = 1, the integral (4.10) can be ’//// ﬂ')/
easily calculated, resulting in Vel 2/ ’//LZO
28
3+ Z
1 e L & —
V)=V, *=11y2 (4.11) J
&0,0 7 L0
The curve V *, shown in Fig. 4, differs : “
from V,°, in the most unfavorable case Fig. 4.

u = 0, only by about 6 per cent.

Substituting Vm', instead of Vm°, into the formula (4.9), we obtain
a simple approximate expression for the rigidity D:

34
RB 7 1 T4

=—— 2
aalte 1+ p
For pu = 1, B -1 = E, the expression (4.12) reduces to the known exact
solution for an elastic she1l [11].

(4.12)

BIBLIOGRAPHY

1. Kachanov, L.M., Teoriia polzuchesti (Theory of Creep). Fizmatgiz,
1960.

2. I1’iushin, A.A., Plastichnost’ (Plasticity). Gostekhizdat, 194s8.

3. Bieniek, M.P. and Freudenthal, A.M., Creep deformation and stresses
in pressurized long cylindrical shells. J. Aerospace Sci. No. 10,
1960.

4. Onat, E.T. and Juksel, H., On the steady creep of shells. Proc.
Third U.S. Nat. Congr. Appl. Mech., 1958.

5. Gemma, A.E., The creep deformation of symmetrically loaded circular
cylindrical shells. J. Aerospace Sci. No. 12, 1960.



226

10.

11,

V.I. Rozenbliunm

Calladine, C. and Drucker, D., Nesting surfaces of constant rate of
energy dissipation in creep. Quaert. Appl. Mathem. 20, No. 1, 1962.

Calladine, C. and Drucker, D., A bound method for creep analysis of
structures. J. Mech. Engineering Sci. No. 1, 1962.

Kachanov, L.M., O variatsionnykh metodakh resheniia zadach teorii
plastichnosti (On variational methods of solution of problems of
theory of creep). PMM Vol. 23, No. 3, 1959.

Rozenblium, V.I., Ob uslovii plastichnosti dlia tonkostennykh obo-
lochek (Plasticity conditions of thin shells). PMM Vol. 24, No. 2,
1960.

Hill, R., New horizons in the mechanics of solids. J. Mech. Solids
5, No. 1, 1956. (Russian translation, Sb. per., Mekhanika No.4).
IL, 1957.

Lur*e, A.I., Statika tonkostennykh uprugikh obolochek (Statics of
Thin Elastic Shells). Gostekhizdat, 1947.

Translated by M.P.B.



