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In view of the known analogy [II between the equations of stationary 
creep and the equations of the theory of elastic-plastic deformations 
(or nonlinear elasticity), the expressions for the forces and moments 
in terms of the deformations of the middle surface - derived for an 
elastic-plastic shell on the basis of Kirchhoff’s hypothesis [21 - are 
applicable for the analysis of creep in shells. In the solution of 
specific problems, certain simplifications are introduced L3.41 by 
various arguments. sometimes not quite consistently [S]. The theorem of 
nesting surfaces of constant rate of energy dissipation, established 
recently by Drucker and Calladine [6,71, facilitates an approach to this 
problem from a more general point of view. As a result, it is shown that 
it is possible to derive simplified relations between the forces and 
moments and the deformations, whose form allows for an effective utili- 
zation of the variational methods, in particular, the method given by 
Kachanov [83. 

1. We shall assume the power law of creep, which results in the equa- 
tions of stationary creep in the form [ll 

(uniaxial tension) 

(general case) 

where 

The rate of dissfpatfon of energy per unit volume, il. is given by 
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the expression 

I) = & = csij $ = (m + I) A 
11 

Let the deforming body be subjected to the loading by concentrated 

forces or moments Qi acting at certain points. 

We introduce, instead of B1, two new constants oN and & connected by 

the relation 

eN == B1sAvnl (I.41 

and, comparing the average rate of dissipation of energy in the volume 

V and the “nominal” rate of dissipation DN = ayiN, we obtain 

(1.5) 

The equation (1.5) determines a hypersurface in the rectangular co- 

ordinates Qi and oiy 

The theorem of Drucker and Calladine states that a surface (1.5) con- 

structed for a given value of no is enclosed by another surface corre- 

sponding to a smaller value of 111. 

2. !Ile shall consider first the case of a cylindrical shell with 

axially symmetrical loading, which allows for a simple geometrical inter- 

pretation. The rates of deformation in the axial and circumferential 

directions are given by the known expressions 

(2.1) 

where g1 and i2 are the rates of extension of the middle surface and k1 

is the rate of curvature of the generatrix. 

Using (2.1)) we calculate the rate of dissipation of energy D = D* in 

the volume corresponding to the unit area of the middle surface 

Here, T1 and T2 are the axial and circumferential forces, #II1 is the 

bending moment. We shall assume that the axial force vanishes, i.e. 

Tl = 0. For an elastic material 

Substituting these relations into (2.2) and assuming v = 112, 
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E = uN/iN. we obtain the equation of the surface (1.5) for the case 
m= 1 

tz2 + $ -I 
where 

In the case m - m, the surface ( 1 
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72*2 = 1 (2.3) 

T, = o,h, 
G,h’ 

M,zz4 f2.4) 

.5) represents the corresponding 
Yield condition [61. For a cylindrical shell, with axially symmetrical 
loading (for T 

f 
= O), this condition can be approximately represented 

in the form [2 

Figure 1 shows the corresponding curve (continuous line), which Only 
slightly differs from the exact condition [21 (broken line). 

Fig. 1. Fig. 2. 

Figure 2 shows the curves (2.3) and (2.5). According to the theorem 
of Drucker and Calladine, similar curves for intermediate values of 111 
should be contained between these two. The anticipated location of the 
intermediate curves can be determined with considerable accuracy be- 
cause the distance between the bounding curves is small, and in the 
region of largest divergence it is possible to find the points of inter- 
section of all the curves with the axis tt11 using the known exact solu- 
tions for pure bending. We shall assume the intermediate curves in the 
form 

where a is a constant. Applying to the considered shell element the 
generalized theorem of Castigliano [ll, we obtain 

(2.Q 
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The vector with the components kl, i2 has the direction normal to the 
surface (2.6) at the corresponding point in the plane Ml, Tz and, con- 
sequently 

The relations (2.7) and (2.8) are compatible if A*= A*(f) is assumed. 

From the comparison, for example, with the case of plane strain it 

follows that the function h*(f) should have the form 

A*=-_ A fW4 
m+f (2.9) 

Substituting the relations (2.7) into (2.2) and taking into account 
(2.9). we obtain the equation of the energy-dissipation surfaces in the 
form 

Af-’ = hi& 

According to Fig. 2, the curves for an arbitrary a should pass 
through the point tp = 1 for a1 = 0. Since f = 1 for ml = 0 and t2 

we obtain from C2.10) 

* 
A = haNeN 

(2.10) 

=1 l 

(2.11) 

In order to determine the constant a we use the exact solution of the 
problem of pure bending (nfth M2 = 1/2#,), which has the form 

I- 
Mr=3 

‘;, Ap+e oN 

(z+p) 3 L” (B =G) 

Calculating the corresponding rate of dissiP8tion 

and assuming it equal to the constant tiGN, re obtain 

-- 
ml = -&2+r, XL (2.12) 

The curves (2.6) should intersect the axis m1 at the points (2.12). 
From this condition we find 
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(2.13) 

With the above value of cx the energy-dissipation curves (2.6) co- 
incide, for 1 = 1 and III - m, with the curves (2.3) and (2.5). respec- 
tively. Figure 2 shows also one of the intermediate curves (for m = 3) 
constructed according to equation (2.6). In terms of physical variables 
in equations (2.7)) and taking into account (2.6) and (2.9). we obtain 

m-1 
16~ - 

Tsa + h’” M15’ 1 2 Tz 

m-1 
(2.14) 

. 
= 

xl = )&2+m 
T2¶+$ Ml2 1 7 Ml 

3. The results obtained in the simple problem discussed above are 
helpful in the extension of the solution to a general case of a shell, 
which can be analyzed in similar manner. Calculating the rate of dis- 
sipation D* per unit area of 
usual kinematical hypotheses 

. . . 
en= 81 + 2x1 

and neglecting the ratio h/R 

the middle surface with the use of the 

. 
&= 4 + zn;, 712 * = e;, +& 

in comparison to one, we obtain 

(3.1) 

where 

D* = T,&+ T&-j- T&2 + &il+ Mzxz+ Ml&2 (3.2) 

h/2 hl2 h/2 

T1 = s Mz, Ta= o&z, s Tl? = s aladz 
-W’. --hIa -h/2 

hl2 

Ml = f qzdz, 
zh.2 

hl2 

MS = j- qzdz, 

-hi2 

hl2 

Mla = s olzzdz 
--h/2 

(3.3) 

The case I = 1 is equivalent to the problem of elasticity (with 
v = l/2). Eliminating from (3.2) the rates of deformation of the middle 
surface by means of Love* s relations, substituting the resulting expres- 
sion into (1.5). and assuming E = uN/iN, we obtain the equation of the 
energy-dissipation surface (for RI = 1) in the form 

(t12 - t1t2 + ta2 + 3h22) + f (ml2 - mlm2 + rnsa + 3mlla) = i (3.4) 

where the dimensionless forces and moments are defined by the relations 
(2.4). 

In the case m - 0~ the equation of the energy-dissipation surface 
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coincides with the corresponding yield condition. Using an approximate 

yield condition [91 

(t12- .W2 + ta2 + 3h2) + (ml2 - rnlrn2 + m-2 + 3mla2) = 1 (3.5) 

We postulate the form of the intermediate surfaces as 

j2 E (t12-tlt2 + ta2 + 3td) + 16 k( ml2 - mlm2 + m22 + 3rn12”) = 1 (3.6) 

and, accordingly, we assume 

. aA.* . aA.* aA* 
e1=m, e2=377* e2 = aTl2 

an* . aA* 
A* = m+ Ffl) (3.7) 

X2=x’ 

Determining the rate of dissipation D* with the formula (3.2). taking 

into account the relations (3.7). we obtain from the condition (1.5) the 

equation of the energy-dissipation surfaces 

_4f”s1 = h&b,,, (3.3) 

Here, A has obviously the previous meaning, while the constant k is 

determined by considering the case of pure bending (or comparing with 

the case of a cylindrical shell considered above) 

2 

k=4(2+p)l+p (3.9) 

Finally, the force-deformation relations (3.7) can be written as 

. 3& 
zz12= - Sm-lT12, 

hm 

’ 
kB1 1 

x1= - hm-,-2 
&p--l MI - - 

( 2 M2 

kB1 
__ P--l ( M2 - + M,) ’ xx = hm+2 

’ 
3kB1 

x12 = hm_t2 Sm-lM~z 

(3.10) 

where 

S = (T12 - TlTz + Tz2 + 3Tla2)+ $ (Ml2 - MlMz + M22 + 3Ml2’) 1 ‘I, (3.11) 

We also have 

B,S”‘+l 

‘*=(m+ 1)h”’ 
(3.12) 

Constructing the quadratic form 

E = [($ + ’ ’ ElFZ t_ d,z + T 812 I * 2) + ;(?I12+Xl;(2+x22 +&.9)11/) (3.13) 
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with (3.10) we obtain 

(3.14) 

With these relations, equations (3.10) can be solved with respect to 

the forces and moments and given in the form 

l+k -- 
(0 =2p3 2 ) 

T 
l? 

= 6h E”-’ . 
2 7 ela, 

Introducing the dissipation function 

(3.15) 

(3.16) 

we can write equations (3.15) also in the following form 

Having equations (3.7) and (3.17) we de- 
rive, in the usual way, the variational prin- 

ciples 

Fig. 3. (3.18) 

where de is the power of external (edge and surface) loadings. In the 

first of equations (3.18). the variations are meant for kinematically 
admissible fields of velocities of the middle surface, while in the 

second, for statically admissible fields of forces and moments. Using 

Hill’s method, it is possible to show that, for the actual state, the 

first functional (3.18) has an absolute minimum, and the second func- 

tional has an absolute maximum. 

4. We shall use the first variational principle (3. 18) for the prob- 

lem of creep of a cylindrical shell with circumferential line loading 

(Fig. 3). Since the axial force is missing, the first of equations 
(3.15) gives 

L!& + & = 0 (4.1) 
In a cylindrical shell of radius a, with axially symmetrical loading 
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. w . d% . 
E2=-;;-r XI=--yjq, x2 = 0 (4.2) 

where IO is the radial velocity of creep. With (4.1) and (4.2). we obtain 
from the formula (3.13) 

c I/t 
E= 

I 

for which 

hB1-p 
L’ zz 1 + II 

We shall assume 10 in the form of the elastic solution [II] 

w = w#?-- (cos az + sin az) 

The first variational principle (3.16) becomes 

(4.3) 

(4.4) 

(4.5) 

S{U#+~ 7 @l(a)&- Qwt,} =0 

--00 
(@l (a) = L’ (S)) (4.6) 

Varying the parameters a and we, we obtain from (4.6) the two equa- 

tions 

Q = D (a) ~8, $ D (a) = 0 (D(a)=2(1 + P)T%(.) ds) (4.7) 
0 

Were, D(a) has the meaning of the “rigidity” of the shell. 

Substituting (4.5) into (4.4), and taking into account (4.6) and 

(4.7), we obtain the expression (4.3) 
03 

D (%) = 2hB1-’ ” 
p-1 

J[ (cos zz + sin a2)2+ & 
I 

-.- 

.l+P 
(2%“~2h)~ (cos ax - sin c(z)2 * 

0 

This can be represented in the following form 

(4.9) 

(4.10) 

The diagram of the function V,,,(F) can be constructed (for a fixed m) 

by evaluating the integral on the right-hend side of (4.10) by numerical 

methods. The minimum of this curve corresponds to the root p = &,. The 



values of PO 
are shown in 
function VIRo 
according to 
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found in this way and the corresponding values a0 = a PO 
Fig. 4. The same figure contains also the diagram of ‘the 
= Vm(p) which determines, 
(4.9), the sought rigidity 

of the shell. 

We note that, according to the diagram 
in Fig. 4, the values of PO do not differ 
significantly from one: it is exactly 
PO = 1 for 112 = 1. The minimum of the func- 
tion V,,,(F) is most important. Assuming 
p = F. z 1, the integral (4.10) can be 
easily calculated, resulting in 

3+!J. 

Vm(1)=V,n*=&2~ (4.11) 

The curve Vm*, shown in Fig. 4, differs 
from V,‘, in the most unfavorable case 
p = 0. only by about 6 per cent. 

Fig. 4. 

Substituting Vm*, instead of VW’, into the formula (4.9), we obtain 
a simple approximate expression for the rigidity D: 

(4.12) 

For p = 1, Rl-’ = E, the expression (4.12) reduces to the known exact 
solution for an elastic shell [III. 
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